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Conjecture (Fujita)
Let X be a smooth complex projective variety of dimension n

and L be an ample divisor on X. Then we have

1 OX (KX + mL) is globally generated for m ≥ n + 1.

2 OX (KX + mL) is very ample for m ≥ n + 2.
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Two proofs of Fujita’s conjecture for surfaces

1 Kawamata-Viehweg vanishing theorem + Riemann-Roch;

2 Reider’s method: vector bundle technique + Bogomolov’s

inequality.

The first approach has been generalized to high dimensional

case extensively by Siu, Demailly, Ein-Lazarfeld...

Nevertheless, there are difficulties when one generalizes

Reider’s method to high dimensional varieties.
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Reider’s method revisited

S := smooth complex projective surface

L := a nef divisor on S

d := a positive integer such that L2 > 4d

Theorem (Reider, Beltrametti and Sommese)

If |KS + L| is not (d − 1)-very ample, then there exists an

effective divisor D ⊂ S such that

LD − d ≤ D2 <
1
2

LD < d .
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The proof of Reider’s theorem

Assume that there exists a finite subscheme Z ⊂ S of

length d such that

eZ : H0(S,OS(KS + L)) → H0(Z ,OZ (KS + L))

fails to be surjective.

By Kodaira’s vanishing, one sees

H1(IZ (KS + L)) = Ext1(IZ (L),OS)∨ 6= 0.
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The proof of Reider’s theorem

By induction, one can assume that H1(IZ ′(KS + L)) = 0 for

every proper subscheme Z ′ ⊂ Z .

There exist a rank two vector bundle E and an exact

sequence

0 → OS → E → IZ (L) → 0.
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The proof of Reider’s theorem

Since L2 > 4d , by Bogomolov’s inequality, E is not

µH -semistable for any ample divisor H.

One has an exact sequence

0 → OS(A) → E → IW (B) → 0, where AH > 1
2LH.

The composition A ↪→ E → IZ (L) is injective and

D := L− A is an effective divisor satisfies the desired

inequalities.
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Bogomolov’s inequality

µH : Coh(S) → Q ∪ {+∞}; E 7→ Hc1(E)/ rk E

E ∈ Coh(S) is called µH -(semi)stable (or slope

(semi)stable) if, for all non-zero subsheaves F ↪→ E , we

have µH(F ) < (≤)µH(E/F ).

Theorem (Bogomolov)
Let E be a µH -semistable torsion free sheaf. Then we have

∆(E) := ch2
1(E)− 2 ch0(E) ch2(E) ≥ 0.
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Stability condition
Applications

X := smooth complex projective threefold

L := ample divisor on X

A non-zero class

ξ ∈ H1(X , IZ (KX + L)) ∼= Ext2(IZ (L),OX )

gives an exact triangle

OX [1] → E• → IZ (L)
ξ−→ OX [2].
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Stability condition
Applications

To generalize Reider’s method to threefolds, one needs

a notion of “stability” for E•;

an inequality of Chern character (involving ch3) of E•.
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Stability condition
Applications

Recollections of slope stability

Rewrite the stability function: Z (E) := −Hc1(E) + i rk E

1 Z is additive

2 Im Z (E) ≥ 0

3 Im Z (E) = 0 ⇒ Re Z (E) ≤ 0
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Stability condition
Applications

The phase φ(E) ∈ (0, 1] of E is defined by Z (E) = reiπφ(E)

cot(πφ(E)) = −µH(E)

Lemma
E is µH -(semi)stable if for any 0 6= F ⊆ E one has

φ(E) < (≤)φ(E/F ).
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Stability condition
Applications

Harder-Narasimhan filtration:

Every E ∈ Coh(S) admits a unique filtration

0 = E0 ⊂ E1 ⊂ · · · ⊂ En = E

such that Fi = Ei/Ei−1 is µH semistable and

µ+
H (E) := µH(F1) > µH(F2) > · · · > µH(Fn) := µ−H (E).
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Stability condition
Applications

Bridgeland stability conditions

X := smooth projective variety

Definition (Bridgeland, 2007)

A (weak) stability condition on Db(X ) is a pair σ = (A, Z )

1 A is the heart of a bounded t-structure on Db(X );

2 Z : K (A) → C;

0 6= E 7→ Z (E) ∈ {reiφπ : r > 0(≥ 0), 0 < φ ≤ 1};

3 Every 0 6= E ∈ A has a HN filtration with respect to φ;

4 σ satisfies the “support property”.
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Stability condition
Applications

(X , H) := polarized smooth projective 3-fold

(α, β) ∈ R>0 ⊕ R

Tβ := {E ∈ Coh(X ) : µ−H > β},

Fβ := {E ∈ Coh(X ) : µ+
H ≤ β};

Aβ := 〈Tβ,Fβ[1]〉;

Zα,β : Aβ → C,

E 7→ −H chβ
2(E) + 1

2α2H3 ch0(E) + iH2 chβ
1(E)
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Stability condition
Applications

Theorem (Bridgeland, Arcara-Bertram)

(Aβ , Zα,β) is a weak stability condition on X.
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Stability condition
Applications

Conjecture (Bayer-Macrı̀-Toda 2014)

For any Zα,β-stable object E ∈ Aβ with Re Zα,β(E) = 0, we

have

chβ
3 ≤

α2

6
H2 chβ

1(E).

Theorem (Bayer-Macrı̀-Toda 2014)

If BMT’s conjecture holds then Stab(X ) 6= ∅.
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Stability condition
Applications

Theorem (Li, Bernardara-Macrı̀-Schmidt-Zhao, Piyaratre,

Koseki, Bayer-Macrı̀-Stellari)
BMT’s conjecture holds for some Fano 3-folds, Abelian 3-fold,

toric 3-folds, quintic 3-folds and some product threefolds in

char. zero.

S 2020: BMT’s conjecture holds for 3-folds with vanishing

Chern classes and semistable tangent bundles in any char.

Schmidt 2017: BMT’s conjecture fails for BlP(P3).
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Stability condition
Applications

Conjecture (Bernardara-Macrı̀-Schmidt-Zhao, Piyaratre)

There exists a cycle Γ ∈ A1(X )R s.t. ΓH ≥ 0 and for any

Zα,β-stable object E ∈ Aβ with Re Zα,β(E) = 0, we have

chβ
3(E) ≤ α2

6
H2 chβ

1(E) + Γ chβ
1(E).

Theorem (Bernardara-Macrı̀-Schmidt-Zhao, Piyaratre)
The modified BMT’s conjecture holds for Fano 3-folds.
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Theorem (Bayer-Bertram-Macrı̀-Toda)

Assume BMT’s conjecture holds for (X , L). Fix a positive

integer d. If

1 L3 > 49d;

2 L2D ≥ 7d for every integral divisor class D with L2D > 0

and LD2 < d;

3 LC ≥ 3d for any curve C ⊂ X,

then H1(X , IZ (KX + L)) = 0 for any zero-dimensional

subscheme Z ⊂ X of length d.
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The proof of the theorem

1 L3 > 49d ⇒ E• is not να,β-semistable for any 0 < α � 1;

2 (2) and (3) imply that the maximal subobject of E• is of the

form IW (L) for some zero-dimensional scheme W . This

leads a contradiction.
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Corollary

Assume BMT’s conjecture holds for (X , L). Then

1 OX (KX + mL) is globally generated for m ≥ 4.

2 OX (KX + mL) is very ample for m ≥ 6.

3 OX (KX + mL) is very ample for m ≥ 5, if KX ∼num 0.
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Corollary (S, 2020)
Fujita’s conjecture is true for threefolds with semistable tangent

bundles and vanishing Chern classes in any char.
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Theorem (Langer, 2015)
Let X be a non-uniruled threefold with KX ∼num 0. Then TX is

strongly µH -semistable for every ample divisor H.
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The classical Bogomolov inequality can be proved by analytic

method:

µH -stablity of E ⇒ existence of Hermitian-Einstein metric on

E ⇒ ∆(E) ≥ 0.
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Question
Is there an analytic proof of the BMT conjecture for

E• := [E−1
f−→ E0], where Ei ’s are vector bundles?

να,β-semistablity of E• ⇒? existence of Hermitian-? metrics on

Ei preserved by f ⇒ ch3(E•) ≤?.
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Thank you!
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