Two approaches to Fujita's conjecture

Hao Sun

(Shanghai Normal University)

31 July 2020

Hao Sun Two approaches to Fujita's conjecture

イロト 不得 とくほと くほとう

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Bayer, A., Bertram, A., Macrì, E., Toda, Y.: Bridgeland stability conditions on threefolds II: An application to Fujita's conjecture. J. Algebraic Geom. 23(4), 693–710 (2014).

▲ □ ▶ ▲ 三 ▶ ▲ 三 ▶ …

Conjecture (Fujita)

Let X be a smooth complex projective variety of dimension n

and L be an ample divisor on X. Then we have

- $\mathcal{O}_X(K_X + mL)$ is globally generated for $m \ge n + 1$.
- 3 $\mathcal{O}_X(K_X + mL)$ is very ample for $m \ge n + 2$.

イロト イボト イヨト イヨト 三日

Two proofs of Fujita's conjecture for surfaces

- Kawamata-Viehweg vanishing theorem + Riemann-Roch;
- Reider's method: vector bundle technique + Bogomolov's inequality.

The first approach has been generalized to high dimensional case extensively by Siu, Demailly, Ein-Lazarfeld...

Nevertheless, there are difficulties when one generalizes

Reider's method to high dimensional varieties.

A E > A E >

Reider's method revisited

Hao Sun Two approaches to Fujita's conjecture

Reider's method revisited

• S := smooth complex projective surface

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Reider's method revisited

- *S* := smooth complex projective surface
- L := a nef divisor on S

Reider's method revisited

- *S* := smooth complex projective surface
- L := a nef divisor on S
- d := a positive integer such that $L^2 > 4d$

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Reider's method revisited

- *S* := smooth complex projective surface
- L := a nef divisor on S
- d := a positive integer such that $L^2 > 4d$

Theorem (Reider, Beltrametti and Sommese)

If $|K_S + L|$ is not (d - 1)-very ample, then there exists an

effective divisor $D \subset S$ such that

$$LD - d \le D^2 < \frac{1}{2}LD < d.$$

The proof of Reider's theorem

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

The proof of Reider's theorem

 Assume that there exists a finite subscheme Z ⊂ S of length d such that

$$e_Z: H^0(S, \mathcal{O}_S(K_S + L)) \to H^0(Z, \mathcal{O}_Z(K_S + L))$$

fails to be surjective.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

The proof of Reider's theorem

 Assume that there exists a finite subscheme Z ⊂ S of length d such that

$$e_Z: H^0(S, \mathcal{O}_S(K_S + L)) \to H^0(Z, \mathcal{O}_Z(K_S + L))$$

fails to be surjective.

• By Kodaira's vanishing, one sees

$$H^1(\mathcal{I}_Z(K_S+L)) = \mathsf{Ext}^1(\mathcal{I}_Z(L), \mathcal{O}_S)^{\vee} \neq 0.$$

ヘロト ヘアト ヘビト ヘビト

The proof of Reider's theorem

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

The proof of Reider's theorem

 By induction, one can assume that H¹(I_{Z'}(K_S + L)) = 0 for every proper subscheme Z' ⊂ Z.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

The proof of Reider's theorem

- By induction, one can assume that H¹(I_{Z'}(K_S + L)) = 0 for every proper subscheme Z' ⊂ Z.
- There exist a rank two vector bundle *E* and an exact sequence

$$0 \rightarrow \mathcal{O}_S \rightarrow E \rightarrow \mathcal{I}_Z(L) \rightarrow 0.$$

イロン 不得 とくほど 不良 とうせい

The proof of Reider's theorem

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

The proof of Reider's theorem

 Since L² > 4d, by Bogomolov's inequality, E is not μ_H-semistable for any ample divisor H.

・ロト ・ 理 ト ・ ヨ ト ・

The proof of Reider's theorem

- Since L² > 4d, by Bogomolov's inequality, E is not μ_H-semistable for any ample divisor H.
- One has an exact sequence $0 \rightarrow \mathcal{O}_S(A) \rightarrow E \rightarrow \mathcal{I}_W(B) \rightarrow 0$, where $AH > \frac{1}{2}LH$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○○

The proof of Reider's theorem

- Since L² > 4d, by Bogomolov's inequality, E is not μ_H-semistable for any ample divisor H.
- One has an exact sequence $0 \rightarrow \mathcal{O}_S(A) \rightarrow E \rightarrow \mathcal{I}_W(B) \rightarrow 0$, where $AH > \frac{1}{2}LH$.
- The composition A → E → I_Z(L) is injective and
 D := L − A is an effective divisor satisfies the desired inequalities.

Bogomolov's inequality

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Bogomolov's inequality

• μ_H : Coh(S) $\rightarrow \mathbb{Q} \cup \{+\infty\}; E \mapsto Hc_1(E)/ \operatorname{rk} E$

Hao Sun Two approaches to Fujita's conjecture

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Bogomolov's inequality

- μ_H : Coh(S) $\rightarrow \mathbb{Q} \cup \{+\infty\}; E \mapsto Hc_1(E)/ \operatorname{rk} E$
- E ∈ Coh(S) is called μ_H-(semi)stable (or slope (semi)stable) if, for all non-zero subsheaves F → E, we have μ_H(F) < (≤)μ_H(E/F).

Bogomolov's inequality

- μ_H : Coh(S) $\rightarrow \mathbb{Q} \cup \{+\infty\}; E \mapsto Hc_1(E)/ \operatorname{rk} E$
- E ∈ Coh(S) is called μ_H-(semi)stable (or slope (semi)stable) if, for all non-zero subsheaves F → E, we have μ_H(F) < (≤)μ_H(E/F).

Theorem (Bogomolov)

Let E be a μ_H -semistable torsion free sheaf. Then we have

$$\Delta(E):=\operatorname{ch}_1^2(E)-2\operatorname{ch}_0(E)\operatorname{ch}_2(E)\geq 0.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○○

Stability conditior Applications

Hao Sun Two approaches to Fujita's conjecture

Stability condition Applications

• X := smooth complex projective threefold

Stability condition Applications

- X := smooth complex projective threefold
- L := ample divisor on X

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Stability condition Applications

- X := smooth complex projective threefold
- L := ample divisor on X
- A non-zero class

$$\xi \in H^1(X, \mathcal{I}_Z(K_X + L)) \cong \operatorname{Ext}^2(\mathcal{I}_Z(L), \mathcal{O}_X)$$

gives an exact triangle

$$\mathcal{O}_X[1] \to E^{\bullet} \to \mathcal{I}_Z(L) \xrightarrow{\xi} \mathcal{O}_X[2].$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Stability conditior Applications

To generalize Reider's method to threefolds, one needs

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Stability condition Applications

To generalize Reider's method to threefolds, one needs

a notion of "stability" for E[•];

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Stability conditior Applications

To generalize Reider's method to threefolds, one needs

- a notion of "stability" for E[•];
- an inequality of Chern character (involving ch₃) of *E*[•].

Stability condition Applications

Recollections of slope stability

Rewrite the stability function: $Z(E) := -Hc_1(E) + i \operatorname{rk} E$

Stability condition Applications

Recollections of slope stability

Rewrite the stability function: $Z(E) := -Hc_1(E) + i \operatorname{rk} E$

- Z is additive
- **2** Im $Z(E) \ge 0$

Stability condition Applications

Recollections of slope stability

Rewrite the stability function: $Z(E) := -Hc_1(E) + i \operatorname{rk} E$

- Z is additive
- $Im Z(E) \ge 0$
- $Im Z(E) = 0 \Rightarrow \operatorname{Re} Z(E) \leq 0$

Stability condition Applications

Hao Sun Two approaches to Fujita's conjecture

Stability condition Applications

• The phase $\phi(E) \in (0,1]$ of E is defined by $Z(E) = r e^{i \pi \phi(E)}$

Hao Sun Two approaches to Fujita's conjecture

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Stability condition Applications

- The phase $\phi(E) \in (0, 1]$ of *E* is defined by $Z(E) = re^{i\pi\phi(E)}$
- $\cot(\pi\phi(E)) = -\mu_H(E)$

Stability condition Applications

• The phase $\phi(E) \in (0,1]$ of *E* is defined by $Z(E) = re^{i\pi\phi(E)}$

• $\cot(\pi\phi(E)) = -\mu_H(E)$

Lemma

E is μ_H -(semi)stable if for any $0 \neq F \subseteq E$ one has

 $\phi(E) < (\leq)\phi(E/F).$

Hao Sun Two approaches to Fujita's conjecture

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○○

Stability condition Applications

Harder-Narasimhan filtration:

Stability condition Applications

Harder-Narasimhan filtration:

● Every *E* ∈ Coh(*S*) admits a unique filtration

$$0 = E_0 \subset E_1 \subset \cdots \subset E_n = E$$

such that $F_i = E_i/E_{i-1}$ is μ_H semistable and $\mu_H^+(E) := \mu_H(F_1) > \mu_H(F_2) > \cdots > \mu_H(F_n) := \mu_H^-(E).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Stability condition Applications

Bridgeland stability conditions

X := smooth projective variety

Definition (Bridgeland, 2007)

A (weak) stability condition on $D^{b}(X)$ is a pair $\sigma = (A, Z)$

Stability condition Applications

Bridgeland stability conditions

X := smooth projective variety

Definition (Bridgeland, 2007)

A (weak) stability condition on $D^{b}(X)$ is a pair $\sigma = (A, Z)$

• A is the heart of a bounded *t*-structure on $D^{b}(X)$;

Stability condition Applications

Bridgeland stability conditions

X := smooth projective variety

Definition (Bridgeland, 2007)

A (weak) stability condition on $D^{b}(X)$ is a pair $\sigma = (A, Z)$

• \mathcal{A} is the heart of a bounded *t*-structure on $D^{b}(X)$;

$$2 : K(\mathcal{A}) \to \mathbb{C};$$

 $0\neq E\mapsto Z(E)\in\{\textit{re}^{i\phi\pi}:r>0(\geq0), 0<\phi\leq1\};$

Stability condition

Bridgeland stability conditions

X := smooth projective variety

Definition (Bridgeland, 2007)

A (weak) stability condition on $D^{b}(X)$ is a pair $\sigma = (\mathcal{A}, Z)$

• \mathcal{A} is the heart of a bounded *t*-structure on $D^{b}(X)$;

$$2: K(\mathcal{A}) \to \mathbb{C};$$

 $0 \neq E \mapsto Z(E) \in \{ re^{i\phi\pi} : r > 0 \geq 0 \}, 0 < \phi \leq 1 \};$

3 Every $0 \neq E \in A$ has a HN filtration with respect to ϕ ;

Stability condition

Bridgeland stability conditions

X := smooth projective variety

Definition (Bridgeland, 2007)

A (weak) stability condition on $D^{b}(X)$ is a pair $\sigma = (\mathcal{A}, Z)$

• \mathcal{A} is the heart of a bounded *t*-structure on $D^{\mathcal{D}}(X)$;

$$2: K(\mathcal{A}) \to \mathbb{C};$$

 $0 \neq E \mapsto Z(E) \in \{re^{i\phi\pi} : r > 0 (> 0), 0 < \phi < 1\};$

- 3 Every $0 \neq E \in A$ has a HN filtration with respect to ϕ ;
- σ satisfies the "support property".

Stability condition Applications

(X, H) := polarized smooth projective 3-fold $(\alpha, \beta) \in \mathbb{R}_{>0} \oplus \mathbb{R}$

Stability condition Applications

(X, H) := polarized smooth projective 3-fold $(\alpha, \beta) \in \mathbb{R}_{>0} \oplus \mathbb{R}$

•
$$\mathcal{T}_{\beta} := \{ E \in \operatorname{Coh}(X) : \mu_{H}^{-} > \beta \},\$$

 $\mathcal{F}_{\beta} := \{ E \in \operatorname{Coh}(X) : \mu_{H}^{+} \le \beta \};\$

Stability condition Applications

(X, H) := polarized smooth projective 3-fold $(\alpha, \beta) \in \mathbb{R}_{>0} \oplus \mathbb{R}$

•
$$T_{\beta} := \{E \in \operatorname{Coh}(X) : \mu_{H}^{-} > \beta\},\$$

 $\mathcal{F}_{\beta} := \{E \in \operatorname{Coh}(X) : \mu_{H}^{+} \le \beta\};\$
• $\mathcal{A}_{\beta} := \langle T_{\beta}, \mathcal{F}_{\beta}[1] \rangle;\$

Stability condition Applications

$$(X, H) :=$$
 polarized smooth projective 3-fold
 $(\alpha, \beta) \in \mathbb{R}_{>0} \oplus \mathbb{R}$

•
$$\mathcal{T}_{\beta} := \{ E \in \operatorname{Coh}(X) : \mu_{H}^{-} > \beta \},\$$

 $\mathcal{F}_{\beta} := \{ E \in \operatorname{Coh}(X) : \mu_{H}^{+} \le \beta \};\$

•
$$\mathcal{A}_{\beta} := \langle \mathcal{T}_{\beta}, \mathcal{F}_{\beta}[\mathbf{1}] \rangle;$$

•
$$Z_{\alpha,\beta} : \mathcal{A}_{\beta} \to \mathbb{C},$$

 $E \mapsto -H \operatorname{ch}_{2}^{\beta}(E) + \frac{1}{2}\alpha^{2}H^{3}\operatorname{ch}_{0}(E) + iH^{2}\operatorname{ch}_{1}^{\beta}(E)$

Stability condition Applications

Theorem (Bridgeland, Arcara-Bertram)

 $(\mathcal{A}_{\beta}, Z_{\alpha,\beta})$ is a weak stability condition on X.

Stability condition Applications

Conjecture (Bayer-Macri-Toda 2014)

For any $Z_{\alpha,\beta}$ -stable object $E \in A_{\beta}$ with $\operatorname{Re} Z_{\alpha,\beta}(E) = 0$, we

have

$$\mathsf{ch}_3^eta \leq rac{lpha^2}{6} H^2 \, \mathsf{ch}_1^eta(E).$$

Theorem (Bayer-Macri)-Toda 2014)

If BMT's conjecture holds then $Stab(X) \neq \emptyset$.

イロト イボト イヨト イヨト ニヨー

Stability condition Applications

Theorem (Li, Bernardara-Macrì-Schmidt-Zhao, Piyaratre,

Koseki, Bayer-Macrì-Stellari)

BMT's conjecture holds for some Fano 3-folds, Abelian 3-fold,

toric 3-folds, quintic 3-folds and some product threefolds in

char. zero.

イロト イ理ト イヨト イヨト

Stability condition Applications

Theorem (Li, Bernardara-Macrì-Schmidt-Zhao, Piyaratre,

Koseki, Bayer-Macrì-Stellari)

BMT's conjecture holds for some Fano 3-folds, Abelian 3-fold,

toric 3-folds, quintic 3-folds and some product threefolds in

char. zero.

 S 2020: BMT's conjecture holds for 3-folds with vanishing Chern classes and semistable tangent bundles in any char.

ヘロト ヘアト ヘビト ヘビト

Stability condition Applications

Theorem (Li, Bernardara-Macrì-Schmidt-Zhao, Piyaratre,

Koseki, Bayer-Macrì-Stellari)

BMT's conjecture holds for some Fano 3-folds, Abelian 3-fold,

toric 3-folds, quintic 3-folds and some product threefolds in

char. zero.

- S 2020: BMT's conjecture holds for 3-folds with vanishing Chern classes and semistable tangent bundles in any char.
- Schmidt 2017: BMT's conjecture fails for $Bl_P(\mathbb{P}^3)$.

・ロト ・ 一下・ ・ ヨト ・ ヨト

Stability condition Applications

Conjecture (Bernardara-Macrì-Schmidt-Zhao, Piyaratre)

There exists a cycle $\Gamma \in A_1(X)_{\mathbb{R}}$ s.t. $\Gamma H \ge 0$ and for any

 $Z_{\alpha,eta}$ -stable object $E\in \mathcal{A}_{eta}$ with $\operatorname{Re} Z_{\alpha,eta}(E)=$ 0, we have

$$\mathrm{ch}_3^{\beta}(E) \leq rac{lpha^2}{6} H^2 \, \mathrm{ch}_1^{\beta}(E) + \Gamma \, \mathrm{ch}_1^{\beta}(E).$$

Theorem (Bernardara-Macri-Schmidt-Zhao, Piyaratre)

The modified BMT's conjecture holds for Fano 3-folds.

イロト イボト イヨト イヨト 三日

Stability condition Applications

Theorem (Bayer-Bertram-Macri-Toda)

Assume BMT's conjecture holds for (X, L). Fix a positive

integer d. If

then $H^1(X, I_Z(K_X + L)) = 0$ for any zero-dimensional subscheme $Z \subset X$ of length d.

ヘロト ヘアト ヘビト ヘビト

Stability condition Applications

Theorem (Bayer-Bertram-Macri-Toda)

Assume BMT's conjecture holds for (X, L). Fix a positive

integer d. If

1 $L^3 > 49d;$

then $H^1(X, I_Z(K_X + L)) = 0$ for any zero-dimensional subscheme $Z \subset X$ of length d.

イロト イ理ト イヨト イヨト

Stability condition Applications

Theorem (Bayer-Bertram-Macri-Toda)

Assume BMT's conjecture holds for (X, L). Fix a positive

integer d. If

1 $L^3 > 49d;$

 L²D ≥ 7d for every integral divisor class D with L²D > 0 and LD² < d;

then $H^1(X, I_Z(K_X + L)) = 0$ for any zero-dimensional subscheme $Z \subset X$ of length d.

イロト イポト イヨト イヨト

Stability condition Applications

Theorem (Bayer-Bertram-Macri-Toda)

Assume BMT's conjecture holds for (X, L). Fix a positive

integer d. If

- 1) $L^3 > 49d;$
- L²D ≥ 7d for every integral divisor class D with L²D > 0 and LD² < d;

3 $LC \ge 3d$ for any curve $C \subset X$,

then $H^1(X, I_Z(K_X + L)) = 0$ for any zero-dimensional

subscheme $Z \subset X$ of length d.

イロト イポト イヨト イヨト

Stability condition Applications

The proof of the theorem

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Stability condition Applications

The proof of the theorem

• $L^3 > 49d \Rightarrow E^{\bullet}$ is not $\nu_{\alpha,\beta}$ -semistable for any $0 < \alpha \ll 1$;

Stability condition Applications

The proof of the theorem

- $L^3 > 49d \Rightarrow E^{\bullet}$ is not $\nu_{\alpha,\beta}$ -semistable for any $0 < \alpha \ll 1$;
- (2) and (3) imply that the maximal subobject of *E* is of the form *I*_W(*L*) for some zero-dimensional scheme *W*. This leads a contradiction.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Stability condition Applications

Corollary

Assume BMT's conjecture holds for (X, L). Then

▲□▶▲圖▶▲≧▶▲≧▶ 差 のへで

Stability condition Applications

Corollary

Assume BMT's conjecture holds for (X, L). Then

• $\mathcal{O}_X(K_X + mL)$ is globally generated for $m \ge 4$.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 - 釣�?

Stability condition Applications

Corollary

Assume BMT's conjecture holds for (X, L). Then

- $\mathcal{O}_X(K_X + mL)$ is globally generated for $m \ge 4$.
- **2** $\mathcal{O}_X(K_X + mL)$ is very ample for $m \ge 6$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Stability condition Applications

Corollary

Assume BMT's conjecture holds for (X, L). Then

- $\mathcal{O}_X(K_X + mL)$ is globally generated for $m \ge 4$.
- **2** $\mathcal{O}_X(K_X + mL)$ is very ample for $m \ge 6$.
- 3 $\mathcal{O}_X(K_X + mL)$ is very ample for $m \ge 5$, if $K_X \sim_{num} 0$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○○

Stability condition Applications

Corollary (S, 2020)

Fujita's conjecture is true for threefolds with semistable tangent

bundles and vanishing Chern classes in any char.

イロト 不得 とうき とうとう

Stability condition Applications

Theorem (Langer, 2015)

Let X be a non-uniruled threefold with $K_X \sim_{num} 0$. Then T_X is

strongly μ_H -semistable for every ample divisor H.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

The classical Bogomolov inequality can be proved by analytic method:

 μ_H -stablity of $E \Rightarrow$ existence of Hermitian-Einstein metric on $E \Rightarrow \Delta(E) \ge 0.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Question

Is there an analytic proof of the BMT conjecture for

$$E^{\bullet} := [E_{-1} \xrightarrow{f} E_0]$$
, where E_i 's are vector bundles?

 $\nu_{\alpha,\beta}$ -semistablity of $E^{\bullet} \Rightarrow$? existence of Hermitian-? metrics on

 E_i preserved by $f \Rightarrow ch_3(E^{\bullet}) \leq ?.$

イロト イボト イヨト イヨト ニヨー

Thank you!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ